Vibrational Study of Some Low-Dimensional Niobium–Phosphorus–Sulfide Compounds, P₂NbS₈, PNb₂S₁₀, and P₂Nb₄S₂₁

M. QUEIGNEC, M. EVAIN, AND R. BREC

Laboratoire de Chimie des Solides, L.A. 279 CNRS, 2 rue de la Houssinière, 44072 Nantes, France

AND C. SOURISSEAU

Laboratoire de Spectrométrie Infrarouge, L.A. 124 CNRS, Université de Bordeaux I, 33405 Talence, France

Received June 26, 1985

Infrared and Raman spectra (800–100 cm⁻¹) of polycrystalline samples of 2D P₂NbS₈, 3D P₂NbS₈, 2D PNb₂S₁₀, and 2D P₂Nb₄S₂₁ at 300 K were investigated and compared with those of NbS₂Cl₂ and of various phosphorus–sulfide anion containing salts. A complete assignment of the spectra is proposed and it emphasizes structural relationships within this niobium–phosphorus–sulfide family, and several modes are assigned to (Nb₂(S₂)₂) cluster motions. The UV-visible absorption spectra (250–1000 nm) of the four compounds exhibit optical band gaps at ~300 nm, which confirms their broadband semiconductor property and an electric dipole allowed charge transfer (Nb \rightarrow S) transition at about 370–400 nm. This transition can account for selective intensity enhancements of some Raman bands due to (Nb₂(S₂)₂) cluster vibrations under preresonance conditions ($\lambda_0 = 514.5-488.0$ nm). Finally, this vibrational study permits identification of several characteristic modes, such as ν Nb–S, ν Nb–Nb, ν PS₂, or ν PS₃ and stretching of S²₂⁻ or S²₃⁻ groups, which could be perturbed upon further intercalation reactions within the Van der Waals gaps of the two-dimensional host lattices and thus could be used as "electronic probes." © 1986 Academic Press. Inc.

Introduction

Two-dimensional (2D) and three-dimensional (3D) P_2NbS_8 , 2D PNb_2S_{10} , and 2D $P_2Nb_4S_{21}$ are highly colored diamagnetic insulators. They represent four structural types of a homogeneous family whose structures have been recently determined (1-4) and are based on different arrangements of biprismatic bicapped (Nb₂S₁₂) units and tetrahedral (PS₄) groups.

The present study has been undertaken as a part of a more general vibrational study of 2D compounds able to intercalate molecules or ions (5, 6). In fact, intercalation experiments within the van der Waals gaps $(\sim 3.3 \text{ Å})$ of these layered systems are now in progress to search for new materials of interest in electrochemistry as positive electrodes in secondary generators.

The main purpose of this study is thus to identify and compare typical vibrational modes in these host lattices in order to get a better insight into their short-range order and the interatomic interactions around the possible redox centers. This study should permit some predictions concerning structural and electronic perturbations induced by future intercalation reactions.

Experimental

The four P-Nb-S compounds under study were prepared as described recently (1-4) and the NbS₂Cl₂ compound was obtained according to literature procedures (7-9).

UV-Visible absorption spectra (250–1000 nm) were recorded at 300 K using a Cary 17 spectrometer in the transmission mode, and infrared spectra (1000–180 cm⁻¹) were obtained at 300 and 80 K with a Perkin–Elmer 180 instrument, with the powdered samples being dispersed in Nujol.

Raman spectra (1000-50 cm⁻¹) were recorded on a triple monochromator Coderg T800 instrument, using different emission lines of a Spectra-Physics Model 171 Ar⁺ laser. Detection through a RCA C31034 photomultiplier was made by standard photon counting techniques. Low laser power was always used ($P_0 \leq 100-200$ mW), and spectra of the compounds dispersed in KCl (KBr or KClO₄) were obtained by use of a sample holder rotating at ca. 1600 rev min⁻¹ in order to avoid any local heating effects. Under these conditions, all the compounds were quite stable, although $Nb_2S_2Cl_2$ has been previously reported to decompose rapidly in the laser beam (10).

Structures and Selection Rules

The structure of the four P–Nb–S materials is built of tetrahedral (PS₄) groups and of distorted trigonal bicapped (NbS₈) prisms sharing a rectangular face to constitute (Nb₂S₁₂) units (Fig. 1). In each (Nb₂S₁₂) biprism, there is a Nb⁴⁺–Nb⁴⁺ single bond lying perpendicular to the common face formed by two S₂²⁻ pairs. When looking at interatomic distances (1–4), the strongest short-range interactions are localized within cage-shaped (Nb₂(S₂)₂) units. As similar cages are already known to exist in niobium–chalcogenide halides NbS₂X₂ (7– 12), we have made use of the NbS₂Cl₂ model system (see below).

NbS_2Cl_2

This compound crystallizes in the monoclinic system, space group C2/m (C_{2h}^3), with two molecular entities per primitive unit cell (7, 9). The Bravais cell contains only one $(Nb_2(S_2)_2)$ cage of approximately D_{2h} symmetry which consists of a pair of Nb⁴⁺ ions lying perpendicular to the plane of two S_2^{2-} groups. The cages are linked together by the Cl atoms to form sheets parallel to the (a,b) plane and each metal ion is coordinated to four CI atoms and to two S_2^{2-} pairs. However, Nb $\cdot \cdot \cdot$ Cl interactions are markedly weaker than the Nb \cdots S ones, so that the 12 vibrational modes of an "isolated" $(Nb_2(S_2)_2)$ cluster can be classified as follows:

$$\Gamma^{D_{2h}} \text{ cluster} = \underbrace{3A_g + B_{2g}}_{(Raman)} + \underbrace{B_{1g} + B_{3g}}_{(Raman)} + \underbrace{A_u + B_{2u}}_{(Raman)} + \underbrace{2B_{1u} + 2B_{3u}}_{(Raman)} + \underbrace{2B_g}_{(Raman)} + \underbrace{2A_u}_{(IR)} + \underbrace{4B_u}_{(IR)}$$

One expects six Raman and six infrared active vibrations with mutual exclusion and all these modes, labeled from M_1 to M_{12} are sketched in Fig. 2. It is noteworthy that we have not used the same numbering of vibrations as in Ref. (11) and we propose a slightly different representation of the normal modes.

FIG. 1. Perspective view of a (Nb_2S_{12}) biprismatic bicapped unit showing $(S1_A-S1_B)^{2-}$ pairs (1).

2D and 3D P_2NbS_8

2D P₂NbS₈ crystallizes in the orthorhombic *Cmca* (D_{2h}^{18}) space group with four entities per primitive unit cell. The (Nb_2S_{12}) units are linked to each other through (P_2S_6) groups made from two edge-sharing (PS_4) tetrahedra giving rise to

anions (Fig. 3).

3D P_2NbS_8 derivative crystallizes in the tetragonal $P\overline{4}m2$ (D_{2d}^8) space group with four formula in the Bravais cell. Now, the (Nb₂S₁₂) biprisms are bonded to each other

FIG. 2. Schematic representation of the 12 internal vibrations in a $(Nb_2(S_2)_2)$ cage unit.

FIG. 3. Projection of 2D P_2NbS_8 along the \tilde{b} axis. Heavy continuous and dotted lines join the sulfur atoms constituting the niobium prismatic surrounding. Thin continuous and dotted lines join atoms of (P_2S_6) groups. Numbers are fractional heights (× 100) of the atoms (1).

via interconnected (PS₄) tetrahedra constituting (P_4S_{12}) rings (Fig. 4).

From interatomic-distance considerations one recognizes in both structures cage-shaped $(Nb_2(S_2)_2)$ units of approximately D_{2h} symmetry so that these crystal structures can be described as follows:

 C_{2h} site C_i site

 $2D-4 \times P_2NbS_8$ (D_{2h}) special positions = 2(Nb₂(S₂)₂) + 4(P₂S₆) $3D-4 \times P_2NbS_8$ (D_{2d}) special positions

$$= 2(Nb_2(S_2)_2) + 2(P_4S_{12}) D_2 \text{ site } S_4 \text{ site}$$

First, the 12 internal vibrations of a $(Nb_2(S_2)_2)$ cage give rise to 24 modes at the center of the Brillouin zone of the crystal and they are classified under the irreducible representations of the D_{2h} and D_{2d} point groups, respectively:

2D P₂NbS₈

$$\Gamma^{D_{2h}} \text{ cluster} = \underbrace{3A_g + B_{2g}}_{\Gamma^{C_{2h}} \text{ site}} = \underbrace{4A_g}_{(R)} + \underbrace{2B_{1g} + B_{3g}}_{(R)} + \underbrace{4B_{u} + B_{2u}}_{(R)} + \underbrace{2B_{1u} + 2B_{3u}}_{(R)} + \underbrace{2B_{g}}_{(R)} + \underbrace{2B_{g}}_{(R)} + \underbrace{2A_u}_{(R)} + \underbrace{4B_{u}}_{(R)} + \underbrace{4B_{u}$$

$\Gamma^{D_{2h}}$ cluster = $3A_g + A_u +$	$+ \underbrace{B_{1g} + 2B_{1u}}_{} + \underbrace{B_{2g}}_{}$	$+ B_{2u} + B_{3g} + 2B_3$
Γ^{D_2} site = $4A$ +	$+$ $3B_1$ $+$	$2B_2 + 3B_3$
$\Gamma^{D_{2d}} \operatorname{crystal} = 4A_1 + 4B_1 + (R) (R)$	$+ 3A_2 + 3B_2 + - (IR,R)$	5 <i>E</i> (IR,R)

One expects in the former case a splitting of the six Raman active modes into $(A_g + B_{2g})$ or $(B_{1g} + B_{3g})$ doublets. Similarly, B_{1u} and B_{3u} -type modes must give rise to infrared doublets, while the B_{2u} mode is no sensitive to correlation effects and the A_u one

3D P₂NbS₈

becomes infrared active (B_{2u} component). In the latter case, the infrared-Raman mutual-exclusion rule is removed, all the ungerade vibrations become Raman active, and coincidences are expected for B_2 - and *E*-type crystalline vibrations. Finally, the

FIG. 4. Projection along the \vec{b} axis of 3D-P₂NbS₈ tetragonal structure. Numbers are fractional heights (× 100) of the atoms (2).

three totally symmetric A_g cluster modes should be split into $(A_1 + B_1)$ Raman doublets due to Davydov effects. the $(P_2S_6)^{2-}$ anion belongs also to the D_{2h} point group symmetry, and its internal vibrations are classified according to the correlation diagram

Concerning now the anionic fragments,

$$\Gamma^{D_{2h}} (P_2S_6)^{2-} = \underbrace{4A_g + 2B_{1g} + 2B_{2g} + B_{3g}}_{\Gamma^{C_i} \text{ site}} + \underbrace{4u + 3B_{1u} + 2B_{2u} + 3B_{3u}}_{PA_u}$$

$$\Gamma^{D_{2h}} \text{ crystal} = \underbrace{9A_g + 9B_{1g} + 9B_{2g} + 9B_{3g}}_{(R) (R) (R) (R)} + \underbrace{9A_u + 9B_{1u} + 9B_{2u} + 9B_{3u}}_{- (IR) (IR) (IR) (IR)}$$

Thirty-six modes are Raman active and twenty-seven modes are infrared active, preserving mutual exclusion. The (P_4S_{12})

rings in the 3D compound are localized on S_4 symmetry sites and because of correlation effects, one obtains:

$$\Gamma^{S_4} (P_4 S_{12}) = \underbrace{11A}_{(R)} + \underbrace{11B}_{(R)} + \underbrace{10E}_{(R)} + \underbrace{10E}_{(R)} + \underbrace{11B_1}_{(R)} + \underbrace{11B_2}_{(R)} + \underbrace{20E}_{(R,R)} (IR,R)$$

All the modes remain active and one expects a splitting of *B*-type vibrations into two Raman $(B_1 + B_2)$ components.

Finally, as far as lattice modes are concerned, in 2D P₂NbS₈ 18 librational vibrations are Raman active $(\Gamma_{R'}^{D_{2h}} = 4A_g + 5B_{1g} + 4B_{2g} + 5B_{3g})$ and 15 translational motions are infrared active $(\Gamma_{T'}^{D_{2h}} = 4A_u + 4B_{1u} + 3B_{2u} + 4B_{3u})$ excluding the acoustic modes. In contrast, Raman and infrared coincidences are expected in the low-frequency spectra of the 3D compound $(\Gamma_{R'}^{D_{2h}} = A_1 + 2A_2 + B_2 + 4E$ and $\Gamma_{T'}^{D_{2d}} = A_1 + B_1 + B_2 + 3E)$.

$2D PNb_2S_{10}$ and $2D P_2Nb_4S_{21}$

The layered PNb₂S₁₀ compound crystallizes with orthorhombic symmetry, space group $P2_12_12(D_2^3)$, with four entities per unit cell, and the 2D P₂Nb₄S₂₁ crystal shows the monoclinic symmetry space group C2/c (C_{2h}^6) , with two entities per primitive unit cell.

In these compounds, the (Nb_2S_{12}) units are directly linked to each other not only through $S \cdot \cdot \cdot S$ edges of the prisms but also through one of their bicapping sulfur atoms, forming infinite (Nb₂S₉) chains (Fig. 5). It is noteworthy that the capping sulfur is also involved in a S-S bond with one of the edge sulfur atoms, and it gives rise to a new S_2^{2-} pair (intercluster pair). In the first PNb₂S₁₀ compound, bonding between the chains takes place through (P_2S_8) units built of two (PS₄) groups, i.e., two (PS₃) groups sharing again another S_2^{2-} pair (intraanionic pair). In the second case of $P_2Nb_4S_{21}$, the chains are linked to each other through (P_2S_9) units made from two (PS_4) tetrahedra themselves interacting with an extra sulfur atom, i.e., two (PS₃) groups sharing a $(S_3)^{2-}$ anionic group (3, 4).

FIG. 5. Schematic representation of a (Nb_2S_9) infinite chain.

In both compounds, as previously mentioned for P2NbS8 phases, the distances between niobium and sulfur atoms constituting the common rectangular face of the biprism are shorter than the other Nb-S distances (~2.55-2.59 Å as compared with 2.47-2.54 Å); nevertheless, $(Nb_2-S_2^{2-})$ interactions involving intercluster pairs are still very strong. This implies that "isolated" (Nb₂(S₂)₂) clusters cannot be considered, and we propose to describe the moaccording structures to the lecular following formulae:

$$2D-4 \times PNO_2S_{10}$$

$$D_2^3 \text{ special positions}$$

$$= 4(Nb_2(S_2)_2S_2) + 2(P_2S_6(S_2))$$

$$C_1 \text{ site} \qquad C_2 \text{ site}$$

 $2D-2 \times P_2Nb_4S_{21}$ $C_{2h}^6 \text{ special positions}$ $= 4(Nb_2(S_2)_2S_2) + 2(P_2S_6(S_3))$ $C_1 \text{ site } C_i \text{ site}$

Consequently, the correlation diagrams between site and factor groups for the anionic frameworks are:

$$(P_{2}S_{6}(S_{2})) \begin{cases} \Gamma^{C_{2}} \text{ site} = 13A + 11B \\ \Gamma^{D_{2}} \text{ crystal} = 13A_{1} + 13B_{1} + 11A_{2} + 11B_{2} \\ (R) \quad (IR,R) \quad (IR,R) \quad (IR,R) \end{cases}$$
$$(P_{2}S_{6}(S_{3})) \begin{cases} \Gamma^{C_{i}} \text{ site} = 12A_{g} + 15A_{u} \\ \Gamma^{C_{2h}} \text{ crystal} = 12A_{g} + 12B_{g} + 15A_{u} + 15B_{u} \\ (R) \quad (R) \quad (IR) \quad (IR) \end{cases}$$

It is noteworthy that, in the $P_2Nb_4S_{21}$ structure, a dynamical disorder of the central S atom in $(S_3)^{2-}$ catenated anions can only account for the time averaged special centrosymmetric positions of the anionic fragments (4).

Similarly, correlation tables for the vibrations of the complex $(Nb_2(S_2)_2S_2)$

units can be established, and in both cases one expects complex spectra with many Raman and infrared coincidences.

Finally, in the low-frequency regions, chain-bending vibrations and also lattice modes will be expected and only tentative assignments can be suggested.

FIG. 6. Raman spectra (650–100 cm⁻¹) of a polycrystalline sample of NbS₂Cl₂ at 300 K using two different exciting lines. (*) Bands assigned to ν Nb–Cl vibrations.

Vibrational Results and Discussion

Raman spectra of powdered samples of NbS₂Cl₂ using the 514.5 and 457.9 nm exciting lines are shown on Fig. 6. The infrared and Raman ($\lambda_0 = 514.5$ and/or 488.0 nm) spectra for polycrystalline samples of 2D P₂NbS₈, 3D P₂NbS₈, 2D PNb₂S₁₀, and 2D P₂Nb4S₂₁ are shown in Figs. 7, 8, 9, and 10, respectively. The corresponding band positions and proposed assignments are re-

ported in Tables I–III. Finally, the UV-visible absorption spectra of the four P–Nb–S solid phases under study are shown on Fig. 11.

Vibrational Spectra of NbS₂Cl₂

The vibrational spectra of NbS_2X_2 compounds (X = Cl, Br, I) have been already reported by Perrin *et al.* (10, 11), but incomplete Raman data were obtained be-

FIG. 7. Infrared and Raman spectra (700-100 cm⁻¹) of 2D P_2NbS_8 at 300 K.

FIG. 8. Infrared and Raman spectra (700–100 cm⁻¹) of 3D P_2NbS_8 at 300 K.

cause of photodecomposition of the samples under the He-Ne ($\lambda_0 = 632.8$ nm) laser beam. Such effects were avoided in this study even when using different exciting lines from 514.5 and 457.9 nm.

We have observed all the expected Raman modes and in particular we assign the three intense bands at 590, 332, and 214 cm⁻¹ to the totally symmetric A_g vibrations, namely, ν S-S, ν_s Nb-(S₂)₂, and ν Nb-Nb (Fig. 6). The last mode, not observed in Ref. (10), was erroneously identified with a plasma line at ~188 cm⁻¹. As far as the $\nu_a Nb-S_2$ (M_5 mode) and deformation cluster vibrations are concerned, we assign the new weak signal at 354 cm⁻¹ to M_5 (its infrared out-of-phase counterpart, M_8 , has been previously observed at 377 cm⁻¹) and we locate M_6 (B_{3g}) and M_4 (B_{1g}) vibrations at ~310 and ~240 cm⁻¹, respectively. The additional bands in the frequency range 300–240 cm⁻¹ correspond to intercluster $\nu Nb-$ Cl vibrations in agreement with infrared results for NbS₂Cl₂ (10) and Nb₂Cl₁₀ (13).

FIG. 9. Infrared and Raman spectra (700-100 cm⁻¹) of 2D PNb₂S₁₀ at 300 K.

CI ₂ ^b Zaman)										5905	M092) ()	_									_
NbS ₇ IR M. I	(syn										W	(Ag 588s M1	7825DJ (B3u)								377m M ₈	(B1)
P ₂ NbS ₈	Tentative assignments ^a	$435 + 397 = 832 \text{ cm}^{-1}$	$2 \times 397 = 794 \text{ cm}^{-1}$	$435 + 329 = 764 \text{ cm}^{-1}$	$397 + 347 = 744 \text{ cm}^{-1}$	$398 + 325 = 723 \mathrm{cm}^{-1}$	$397 + 329 = 726 \mathrm{cm}^{-1}$	$2 \times 329 = 658 \text{ cm}^{-1}$	$p_8 + p_{11}; p_9 p_{S_{term}}^{term}$		$+ (329 + 281 = 610 \text{ cm}^{-1})$	$v_1;v_5\mathrm{PS}_2^{\mathrm{term}} + M_1 + M_{11}$		v ₁₆ :v _s PS ₂	$+ (329 + 203 = 532 \text{ cm}^{-1})$		(1)A]			⁶ ⁹	
2D	Raman	 830 vw	790vw	763w			725w	657w /	628w	613vw	602vvw	573m) 563w)		[545vw] * 531m br	10: 1 100			1	4355 414m		397s J	
	IR				[737sh	[721m.br			643sh,m 628s	610m		[570vs [562sh	551s	545s	521vvw 514vw		456vw			{400vs 398sh		
<u>(1</u>)	Raman		795vw	786vw						[641w	1 (612w	ا { <i>577</i> m 554w			s 521w 514w	474w			2 418vs	2	,6 398s 370vw	mv CAF
Ag2P2S6 (IR								614s } 592m [}] 28		114	580m v.	556w	542m	520s ¹ 1	Ú)	466m } ²¹³	428vw	4	395w vi	1	
(61	Raman					731vw				[645w	{612vw	592m				492w			415vs		395vw 365m	26 Duw
2S6 (18,						0	9	S	8/1		114	14		<u>C</u>	P16	Ĉ	P13	Ũ	2	<i>11</i> 4	94	
TI ₂ F	R							665w	640s					540w	530m		480m,br	420m		392m-s	360vw	345m-s
50)	Raman									604		520						!	347		289	
1) Al2CIA (2									84	114	-	ž			P16		P13		2	11 4	3 %	
4	R								622						482		426			322		

TABLE I

98

QUEIGNEC ET AL.

				22m	_	31vw	62	modes			
				41w 32m	attice modes			lattice			
				20s	+	11100	48	- + F		9	1
				(75m	Tí ₈ +	-07	75	Ē			ç
				,	~(E06	Ň			2	-78
Def Nb-Ci { 172vw + R' chister { 154w					_	120m		122vw	771	7I7	
(<i>An</i>)	ν_{12} :rock. PS ₂ or R' cluster	~154w		[4]m	P12		ν ₁₂ 159s		1	414	3
166s M ₇	P14: Wag. PS2 or M7		181w		214	184m	V14	189m-s			ž
(<i>A</i> _g)	S								107	44	
) and/or S	169ш		200m		V15 + V4	175vs	P15 + P4	ē	514	
218w J NbCl (v ₁₅ :twist PS ₂	216w				210w		200vw	071	1	
245sh v 240w	M3	203vs	[202vw]								
$\begin{array}{c} 255 \text{sh} \left[\begin{array}{c} (B_{1g}) \\ 250 \text{vs} \end{array} \right] + \left. \left. \begin{array}{c} 246 \text{vw} \end{array} \right. \end{array}$	M4	222m /*				226w	219vw	226vs 218vw			
M4 (255vw	DT: Wag. PS2	235m		233m	La		v7 244s		162	2	
295vs v { 282m Nb-Cl ¹ 275sh	<pre>> and/or > vi8:8PS2cm</pre>	[253vw]	254m			247w	P18 P18			814	42
	by:rock. PS2		262m		81a + 6a		and/or	249m-s			
(B ₁₁) { 309m	0			259m		262w	61			64	175
$M_{12}(B_{3u})$? $M_{1} = \begin{bmatrix} 3 \end{bmatrix}$ 5 ch	M9 M M	281m	289s 278m								
323vs M9(B1#)	ν ₃ :δPS2 ^{term}	294vw		299m	e.		v ₃ 304s		221	ŗ,	
(A_g) (332s	M10		310s								
$M_2 \begin{cases} 337 \text{sh} \end{cases}$											

FIG. 10. Infrared and Raman spectra (650–100 cm⁻¹) of 2D $P_2Nb_4S_{21}$ at 300 K; arrows indicate bands assigned to S_2^{2-} vibrations (see text).

Finally, the low-frequency Raman signals at 172 and 154 cm⁻¹ probably come from δ NbCl₂ bending vibrations and/or librational cluster motions. In order to check these assignments, several Raman spectra were recorded using exciting radiations ranging from 514.5 to 457.9 nm, and intensity variations were estimated with respect to the 465 cm⁻¹ band of KClO₄ used as internal standard. However, as the laser incident energy increases, no drastic intensity enhancements were observed and, in contrast, the intensity of the vS-S band at 590 cm⁻¹ decreases markedly. This may be due in part to the strongly absorbing nature of this semiconductor-type material which exhibits an absorption edge at ~320 nm and an intense electronic transition at 365 nm (14); also, antiresonance phenomena or interference effects between low lying Laporte-forbidden d-d-type transitions and higher energy allowed transitions can be invoked (15, 16). In fact, according to photoelectron results and atomic orbital studies

FIG. 11. UV-Visible absorption spectra of 2D and 3D P_2NbS_8 , 2D PNb_2S_{10} , and 2D $P_2Nb_4S_{21}$ at 300 K (wavelengths of some maxima are reported).

TABLE II

Infrared and Raman Band Positions (cm $^{-1})$ in 3D P_2NbS_8 and Comparison with Vibrational Data for P_4S_{10} and $Ag_4P_2S_7$ at 300 K

P ₄ S ₁₀	(21)	Ag ₄ P ₂	S ₇ (17)		3D P ₂ NbS ₈ ^a
IR	Raman	IR	Raman	IR	Raman Tentative assignments
				803w	$481 + 328 = 809 \text{ cm}^{-1}$
				738sh	$396 + 346 = 742 \text{ cm}^{-1}$
715vw	715m-s			721m.br	396 + 328 = 724 cm ⁻¹
690vs	689m			689vw	681 vw $396 + 296 = 692$ cm ⁻¹
650m-w	656w			6515	649vw PS, term
	640vw			640s	641vw
		596m)	(601w	612vw	611 yw $328 \pm 281 = 609 \text{ cm}^{-1}$
					584sh v.PS. term
		570m		57185	$578m$ + $M_{\rm c}$ + $M_{\rm c}$
565vw	560vw	540sh v.	PS. \$ 550w	566sh	S65w
				5496	$548 \text{ yrg} = 328 \pm 222 = 550 \text{ cm}^{-1}$
		5265		\$27w	528w) # PS_ term
		5128	504m	516vw	517vav
530vs)	(530vw	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(20-111	51074	51774
			S	48745	
	v 486vw	/	″`\	491.00	S S
1	s	454s v P	P 450m	40175	450w
· · · · / /	Ϋ́\ {	-5-13 Val	1 4,000		$\nu_{\rm A40}$
410sh /	\ 480sh			440vw	4400 ** (
P	P	405m <i>v</i> ,	PS ₃ 411vs		412w J
390w J	(398m			396s	-
			S		
		ν,P	P 389vs		400s] S
		·			
				3/1vw	384m J V _s P P
				354vw	$M_8 + M_5$
				346m	343VW 1
				[228-m]	
				[326m]	S_{28S} P
				210	
				318m	$318W$ or Por δS_2 S
		208		310m	309m M ₁₀
		270W		290S	$29011 + 013_2 + M_9$
		283m	(285-	2928	290VW) 281-7 M \ M ()
267sh	(2720	20511	20311	280m	$28187'$ $M_{12} + M_6?$
20/31	2,23	2/5w 01:53		260	258
264m		25000	+ 255m	200m 251a	238W (I. PS ₂
260sh	260sh	25014	2550	2518	and/or or S ₂
20001	20031		8		242
					245w w.PS ₂
	δ		<u>`\</u>		256m)
L L	s l	225vw P	P 210s		
	(\mathbf{X})		- (
P	P				
1				[225m]	228w 🗷)
				[]	$M_4 + M_3$
205sh	203sh				S
					$\langle \rangle$
192sh	198vs			213vw	213m tw. PS ₂ and/or δP P
189w /	188m			206vw	207m δP ₄ S ₁₂
162vw	160m				182w w. PS ₂ and/or M ₇
					S
					/ \
			176w		171m tw. PS ₂ and/or δP P
					153vw r. PS ₂ or R' cluster?
130sh	138m				136m
124s	132sh				120w bending (P ₄ S ₁₂)
					93w
					70w J

^a Same symbols as in Table I.

IR Raman Tentative assignments IR Raman Tentative assignment 6560vw,br 2 × 331 = 662 cm ⁻¹ 650vw,br 2 × 331 = 662 cm ⁻¹ 2 × 332 = 664 cm ⁻¹ 5 × 332 = 664 cm ⁻¹ 5 × 332 = 664 cm ⁻¹ 2 × 332 = 664 cm ⁻¹ 2 × 332 = 664 cm ⁻¹ 2 × 332 = 664 cm ⁻¹ 5 × 332 = 664 cm ⁻¹ 5 × 332 = 664 cm ⁻¹ 2 × 332 = 564 cm ⁻¹ 2 × 332 × 32 × 32 × 32 × 32 × 32 × 32 ×		ł	P ₂ Nb ₄ S ₂₁ ^a	Ä	g4P2S7 (17)	_		μ	Vb2S10 ^a
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	R	Raman	Tentative assignments	IR		Raman	IR	Raman	Tentative assignments
$ \begin{cases} 60x & 612vw \\ 80m & 584vw \\ 80m & 584vw \\ 875m & 570m \\ 575m & 570m \\ 575m & 570m \\ 570m$		656vw,br	$2 \times 331 = 662 \mathrm{cm}^{-1}$					664w,br	$2 \times 332 = 664 \text{ cm}^{-1}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C 10	({ 622sh	662vw,br	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	580m	584vw	v.PS,	596m		601w	582m	591 vw	\v_aPS,
$ \begin{cases} 56w & 563m \cdot w \\ 559m \cdot w \\ 540m \\ 540m \\ 535w \\ 532m \\ 532w \\ 532w \\ 532w \\ 532m \\ 532w \\ 532w \\ 532w \\ 532m \\ 53$	575m		n 1	570m			573m		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		`				550w	550sh	556m	$M_1 + M_{11}$ intracluster
$ \begin{array}{rclcrc} 340 \text{ w} & 540 \text{ w} & 535 \text{ w} & 540 \text{ cm} \\ 532 \text{ w} & 531 \text{ w} & 540 \text{ cm} & 535 \text{ w} & 512 \text{ s} & 540 \text{ cm} \\ 521 \text{ m} & 521 \text{ w} & 512 \text{ s} & 534 \text{ cm}^{-1} & 512 \text{ s} & 534 \text{ cm}^{-1} & 512 \text{ s} & 535 \text{ w} & 516 \text{ w} & 535 \text{ w} & 7 & + (332 + 208 = 540 \text{ cm} \\ 51 \text{ dow} & 510 \text{ w} & 506 \text{ w} & y_{a}^{2} \text{ Ps}_{3} & 453 \text{ s} & y_{a}^{2} \text{ P} & 450 \text{ m} \\ 45 \text{ dow} & y_{a}^{2} \text{ Ps}_{3} & 453 \text{ w} & y_{a}^{2} \text{ Ps}_{3} & 454 \text{ s} & y_{a}^{2} \text{ P} & 450 \text{ m} \\ 45 \text{ m} & 462 \text{ w} & y_{a} \text{ (b) } v_{a} + v_{a} \text{ s}_{3}^{2} & 411 \text{ vs} & 410 \text{ m} & 406 \text{ w} \\ 400 \text{ m} & 411 \text{ m} & y_{a}^{2} \text{ Ps}_{3} & 953 \text{ w} & y_{a}^{2} \text{ Ps}_{3} + (2 \times 208 = 416 \text{ cm} \\ 400 \text{ m} & y_{a}^{2} \text{ Ps}_{3} & 411 \text{ vs} & 410 \text{ m} & 406 \text{ w} \\ 400 \text{ m} & y_{a}^{2} \text{ Ps}_{3} + (2 \times 208 = 416 \text{ cm} \\ 400 \text{ m} & y_{a}^{2} \text{ Ps}_{3} & 411 \text{ vs} & 410 \text{ m} & 406 \text{ w} \\ 400 \text{ m} & y_{a}^{2} \text{ Ps}_{3} + (2 \times 208 = 416 \text{ cm} \\ 400 \text{ m} & y_{a}^{2} \text{ Ps}_{3} + (2 \text{ m} + 16 \text{ cm} \\ 400 \text{ m} & y_{a}^{2} \text{ Ps}_{3} + (2 \text{ m} + 16 \text{ cm} \\ 400 \text{ m} & y_{a}^{2} \text{ Ps}_{3} + (2 \text{ m} + 16 \text{ cm} \\ 400 \text{ m} & y_{a}^{2} \text{ Ps}_{3} + (2 \text{ m} + 16 \text{ cm} \\ 400 \text{ m} & y_{a}^{2} \text{ Ps}_{3} + (2 \text{ m} + 16 \text{ cm} \\ 400 \text{ m} & y_{a}^{2} \text{ Ps}_{3} + (2 \text{ m} + 16 \text{ cm} \\ 400 \text{ m} & y_{a}^{2} \text{ Ps}_{3} + (2 \text{ m} + 16 \text{ cm} \\ 400 \text{ m} & y_{a}^{2} \text{ Ps}_{3} + (2 \text{ m} + 16 \text{ cm} \\ 400 \text{ m} & y_{a}^{2} \text{ Ps}_{3} + (2 \text{ m} + 16 \text{ m} & y_{a}^{2} \text{ Ps}_{3} + (2 \text{ m} + 16 \text{ cm} \\ 410 \text{ m} & y_{a}^{2} \text{ Ps}_{3} + (2 \text{ m} + 16 \text{ m} & y_{a}^{2} \text{ Ps}_{3} + (2 \text{ m} + 16 \text{ m} \\ 410 \text{ m} & y_{a}^{2} \text{ Ps}_{3} + (2 \text{ m} + 16 \text{ m} & y_{a}^{2} \text{ Ps}_{3} + (2 \text{ m} + 16 \text{ m} & y_{a}^{2} \text{ Ps}_{3} + (2 \text{ m} + 16 \text{ m} & y_{a}^{2} \text{ Ps}_{3} + (2 \text{ m} + 16 \text{ m} & y_{a}^{2} \text{ Ps}_{3} + (2 \text{ m} + 16 \text{ m} & y_{a}^{2} \text{ Ps}_{3} + (2 \text{ m} + 16 \text{ m} & y_{a}^{2} \text$	564w	563m-w	$M_1 + M_{11}$ intracluster	540s	$\nu_{a}PS_{3}$		547m		s ² -∫intercluster
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		559m-w					540sh	540sh	f ^{wo2} lintra-anionic
532w 531w $J + (331 + 203 = 534 \text{ cm}^{-1})$ 512s J 504m 516vs 520vw $J^{\mu}P_{a}PS_{3}$ 521m 521vw S_{508vw} $J^{\mu}PS_{3}$ 514vs 506vw $J^{\mu}Ps_{3}$ 491vw 462vw $J = \frac{454s}{24m-w}$ $\frac{1}{456m}$ 455m-w 462vw $J = \frac{454s}{24m-w}$ $\frac{1}{456m}$ 455m-w 462vw $J = \frac{1}{424m-w}$ $J = \frac{1}{405m}$ 405m $v_{a}PS_{3}$ $J = \frac{1}{410m}$ $\frac{1}{406w}$ $J_{\mu}PS_{3} + (2 \times 208 = 416 \text{ cm}^{-1})$ 405m $v_{a}PS_{3}$ $J = \frac{1}{410m}$ $J = \frac{1}{406w}$ $J_{\mu}PS_{3} + (2 \times 208 = 416 \text{ cm}^{-1})$	541w	544m-w		526s			535w	535w	$+ (332 + 208 = 540 \text{ cm}^{-1})$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	532w	531w	$+ (331 + 203 = 534 \text{ cm}^{-1})$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		I		512s		、504m	516vs	520vw	(v'aPS3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	521m	521vw						508vw	
491vw 411vw 462vw $\left(b \right) v_{a} + v_{s}S_{3}^{2}$ 454s $v_{a}P$ 450m 450m 452vw $\left(b \right) v_{a} + v_{s}S_{3}^{2}$ 405m $v_{s}PS_{3}$ 411vs 410m 406w 415m 957vw $\left(v_{s}PS_{3} + (2 \times 208 = 416 \text{ cm} + 405 \text{ cm} + 205 \text{ cm}$	514vs	506vw	►v ² PS ₃						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	491vw	_			s(
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				454s	-d.	P 450m			
$\begin{array}{cccc} 424m \text{-w} & & & & & & & & & & & & & & & & & & &$	455m-w	462vw	(b) $\nu_{\rm a} + \nu_{\rm e} S_{\rm i}^{2-}$	2	9			415m	
409m-w 411m $v_s PS_3$ 411w $v_s PS_3$ 400m 411m $v_s PS_3$ 400m 405m $v_s PS_3$ 405m $v_s PS_3$ 405m $v_s P$ 7389vs		424m-w		405	30 ·	41146	410-	406	(1 - 200) = 300 - 200 + 310
405m } ***********************************	409m-w	411m]	v.PS,		ç S	41175	41011	400w 395vw	(. 111) 017 = 007 \times 7) \pm (c.1.8)
$\nu_{\rm s} {\rm P}$ P 389vs	405m	-			\langle			ì	
					, P,	P 389vs			

TABLE III

102

, + <i>M</i> ,	M ₂	M ₁₀	ter)				2 + M6 + M.	M3	M ₇	cluster 1 bending
Μ,			vNb-S ₂ (interclue		0F3; + M9		W			R' and T' c
364 v w	342w 332vs		311m	[295w]		272m]	259m / 236m	208vs /	2048n 194vw 2181m-w	127m 103m 90vw 81w 74sh 66vw
370m 366m 358m	[345vvw] [339vw]	318vs		301m 292m	281w 281w	268w	254w 237w	209w		
					mc82	P 255m	210s		176w	
				298w 8PS	283m + S	250vw 8P				
$M_8 + M_5$	M_2	vNb-S ₂ (intercluster)	M 10	M ₅		$\delta PS_3 + M_{12} + M_6 + M_4$		88 ^{3- 6} M3	M ₇	chain bending
[365w] 345m-w	331vs	320w		[292vw] [286vw]	278vvw	262w [252w]	238w	227vw 203vs	174w	153w 141w 125w 118vw 108m-w 95m-w 71sh
366m [342w]	[333sh]		329s 325sh	295s 290sh	282m	[262w] [247vw]	[234w]	[201vw]		

 a Same symbols as in Table I. b Bands observed at 476, 458, and 227 cm^{-1}, respectively, in BaS, (24).

103

carried out by Bullet (12) and Rijnsdorp (8) on the $(Nb_2(S_2)_2)$ cage, the highest filled level and the next unoccupied molecular orbitals are composed of $\sim 90\%$ niobium d states, the last occupied Nb- $4dz^2$ (A_g symmetry) bonding orbital lying just above the highest occupied $S-3p_y^*(B_{1g} \text{ symmetry})$ orbital. We thus attribute the high-energy transition at \sim 365 nm to a vibronically allowed metal-to-ligand charge-transfer transition. Now, if we compare both spectra displayed in Fig. 6, we can use the ν Nb-Cl band at $\sim 282 \text{ cm}^{-1}$ as an internal standard which takes into account absorption effects, in which case we note mainly intensity disenhancements of ν S-S (A_g), and B_{2g} and B_{3e} -type modes, while some apparent enhancements are observed for the remaining bands, in particular those assigned to the $\nu_s Nb - (S_2)_2$ and $\nu Nb - Nb (A_g)$ vibrations. These preliminary results under preresonance conditions thus confirm not only our proposed assignments of the low-frequency totally symmetric modes but also the electric-dipole-allowed character of the highenergy charge-transfer transition. Moreover, since the four P-Nb-S phases under study exhibit also a strong electronic transition at \sim 375–405 nm (see below), we have recorded their Raman spectra with different excitations in order to detect similar Raman intensity disenhancements.

Vibrational Spectra of 2D P₂NbS₈

In conjunction with spectroscopic data concerning the $(P_2S_6)^{2-}$ ion in $Ag_2P_2S_6$ (17) or $Tl_2P_2S_6$ (18, 19) and the isoelectronic Al_2Cl_6 molecule (20), the above results for NbS₂Cl₂ allow us to propose complete assignments of the vibrational spectra of 2D P_2NbS_8 (Table I).

First, most of the cluster modes appear as well-resolved doublets or as asymmetric signals in agreement with crystal-effect expectations and they are generally shifted toward lower frequency values (-10 and -30cm⁻¹). We assign the very broad and intense absorption band at 570 cm⁻¹ to the

 ν S-S $B_{3u}(M_{11})$ mode and the corresponding Raman-active symmetric (M_1) mode must surely contribute to the medium intensity doublet at 573-563 cm⁻¹. The strong Raman bands at 329 and 203 cm⁻¹ are assigned to other A_g vibrations, namely, $\nu_s Nb - (S_2)_2$ and ν Nb-Nb, while the infrared-active outof-phase stretching $B_{2\mu}$ mode gives rise to an intense doublet at \sim 310 cm⁻¹. At higher frequencies, the strong infrared doublet at 356-347 cm⁻¹ and its weaker Raman counterpart a 352-346 cm⁻¹ are attributed to v_aNb-S_2 M_5 and M_8 modes, respectively. Finally, the two medium absorption bands at 289 and 278 cm⁻¹ and the Raman signal at 281 cm⁻¹ can be assigned to M_9 , M_{12} , and M_6 cluster fundamentals since no vibrational modes of the $(P_2S_6)^{2-}$ entities are expected in this frequency range. The last B_{1g} type (M_4) cage vibration is tentatively located at 222 cm^{-1} . It is noteworthy that this last mode and the two totally symmetric $\nu_s Nb - (S_2)_2$ and $\nu Nb - Nb$ vibrations undergo apparent Raman intensity enhancements when changing the exciting line from 514.5 to 488.0 nm (Fig. 7). This preresonance Raman result reflects again the charge-transfer character of the dipole-allowed electronic transition observed at ~385 nm (Fig. 11).

As far as vibrations of (P_2S_6) units are concerned, the vibrational spectra of 2D P_2NbS_8 show remarkable similarity with those of $Ag_2P_2S_6$ (17) and $Tl_2P_2S_6$ (18, 19). As shown in Table I, assignments of the three compounds can be established simultaneously and frequency values can be compared, while large frequency shifts due to mass effects are noted for the isoelectronic Al_2Cl_6 molecule (20). We thus propose some new assignments for $Tl_2P_2S_6$, in disagreement with the results published by Wibbelmann *et al.* (18).

In the high-frequency region $(850-650 \text{ cm}^{-1})$ numerous weak bands are observed and explained in terms of overtones and combinations. Several sets of intense infrared bands and weak Raman signals at ~630, 610, 570, and 520 cm⁻¹ are assigned to stretching vibrations of the terminal (PS₂) groups (involved in weaker Nb \cdots S interactions) while the stretching modes of S

bridged P P bonds are easily identified with strong signals in the range 440-390 cm⁻¹. Only the bands due to νPS_2 modes show some crystal splittings, but we have never observed all the theoretically expected components, which confirms, in agreement with X-ray data (1), that $(P_2S_6)^{2-1}$ anions are weakly interacting. Now, the infrared doublet at 262-254 cm⁻¹ is attributed to the overlapping ν_9 (rock. PS₂) and ν_{18} (δ PS₂) vibrations, and the strong Raman bands at 235 and 169 cm⁻¹ are assigned to ν_7 (wag. PS₂) and ν_{15} (twist. PS₂) modes, with an expected strong contribution of the δ

P P deformation. In the low-frequency region, only tentative assignments are proposed. The weak infrared and Raman bands at 181 and 154 cm⁻¹, respectively, may be due either to a bending vibration of (PS₂) groups or to deformation (or librational) motion of (Nb₂(S₂)₂) cages.

Finally, in agreement with the above selection rules, it may be pointed out that these spectra exhibit quite a few infrared and Raman coincidences as indicated by band positions with brackets in Table I. We thus conclude that the main interatomic interactions are effective within both $(Nb_2(S_2)_2)$ and (P_2S_6) frameworks.

Vibrational Spectra of 3D P₂NbS₈

The spectra of 3D P_2NbS_8 show the same general pattern as previously observed for the 2D derivative and one recognizes again modes due to the $(Nb_2(S_2)_2)$ unit in addition to bands due to the anionic fragment. However, at first glance the spectra are more complex and structured (Fig. 8), a result in agreement with the selection rules which predict that all the vibrations become Raman active. First of all, some relative intensity changes are noted for the cluster modes. The ν S-S stretching vibrations of S_2^{2-} pairs give rise to a very strong asymmetric infrared band at \sim 570 cm⁻¹ and to a Raman doublet at 578-565 cm⁻¹; these positions compare favorably with those previously found, since the S-S bond lengths are nearly equivalent (2.014 Å compared to 2.024 Å). The two A_{g} vibrations, $\nu_{s}Nb-(S_{2})_{2}$ at 328-332 cm⁻¹ and ν Nb-Nb at 222-228 cm⁻¹, again show Raman intensity enhancements under preresonance conditions when the laser energy approaches that of the intense charge-transfer electronic transition at 375 nm (Fig. 11). However, care must be exercised in discussing a selective enhancement mechanism since intensities of all the cluster modes have apparently increased when changing the exciting radiation from 514.5 to 488.0 nm. We thus conclude that a strong distortion and a lowering of symmetry of the cages have taken place. Several infrared and Raman coincidences were indeed observed, although this was not expected for the totally symmetric A_{e} modes (Table II).

To propose assignments of the (P_4S_{12}) ring frequencies, we have made use of spectroscopic data already known for the P_4S_{10} molecule (21) and the $(P_2S_7)^{4-}$ ion (17), which present sulfur bridged P P bonds. Four main regions with several sets of peaks showing infrared-Raman coincidences can be distinguished:

(i) In the high-frequency regions 650–610 cm⁻¹ and 580–510 cm⁻¹, the bands are assigned to $\nu_a PS_2$ and $\nu_s PS_2$ vibrations of terminal (or "extracyclic") P–S bonds.

(ii) In the range $490-370 \text{ cm}^{-1}$, several new and intense (infrared) bands are observed which must take origin from stretch-

ing vibrations of "endocyclic" $P \xrightarrow{S} P$ bridged bonds.

(iii) Below 320 cm⁻¹, the PS₂ bending modes occur and the corresponding frequencies follow the same pattern as for 2D P_2NbS_8 . However, two additional bands appear at 318 and 213 cm⁻¹ and are tentatively S

assigned to δP P deformation.

(iv) Finally, some low-frequency ($\nu \le 150$ cm⁻¹) and weak Raman signals are observed which probably come from deformation and librational motions of (P₄S₁₂) rings with likely contributions of intermolecular cluster modes.

We thus emphasize that precise and complete assignments of these spectra are not straightforward; however, it is obvious that 2D and 3D P_2NbS_8 compounds can be easily characterized by their quite different vibrational spectra.

Vibrational Spectra of 2D PNb_2S_{10} and 2D $P_2Nb_4S_{21}$

In these compounds, we have previously mentioned that a description of a part of the crystal structures in terms of isolated $(Nb_2(S_2)_2)$ cages was a crude approximation. Nevertheless, such a model seems to apply again, since we observe all the bands yet assigned to $(Nb_2(S_2)_2)$ cluster modes at very close frequency values. This means that intercluster vibrational couplings within the infinite chains are weak, a result in agreement with the low multiplicity of the detected signals (no further splittings were observed by cooling the samples down to 80 K). Moreover, as the spectra of both compounds show a great similarity, we conclude that short-range interactions of the same order of magnitude are taking place in between the (Nb₂S₀) chains of these layered systems.

As expected, most of the cage vibrations are both infrared and Raman active. First, the intracluster ν S-S vibrations are localized at 560-550 cm⁻¹, i.e., at lower frequencies than in 2D P₂NbS₈, in agreement with X-ray data which have converged to significantly larger d(S-S) distances (2.043 Å as compared with 2.024 Å). The several peaks observed between 565 and 535 cm⁻¹ can thus be assigned according to the different

S-S bond lengths found in the crystal structures (ranging from 2.041 to 2.066 Å). In addition, the more complex infrared spectrum of PNb_2S_{10} in this region is probably due to the existence of a third type of S_2^{2-} pairs within the $(P_2S_6(S_2))$ units. These assignments (Table III) are supported by empirical calculation (see below). The very strong Raman bands at ~205 and ~335 cm^{-1} (the latter giving rise to a doublet in PNb_2S_{10}) are assigned to $\nu Nb-Nb$ and $\nu_{\rm s}$ Nb–(S₂)₂ symmetric modes, and the intense infrared bands at 318 and 329 cm⁻¹ in PNb₂S₁₀ and P₂Nb₄S₂₁, respectively, are attributed to the corresponding out-of-phase Nb- $(S_2)_2$ stretching B_{2u} modes. The isolated absorption bands near 366 cm⁻¹ (resolved into a multiplet in PNb_2S_{10}) correspond to the B_{1u} v_aNb-S_2 (M_8) mode, and its B_{2g} inphase Raman counterpart, M_5 vibration, appears at slightly lower frequencies. Also, several medium- or weak-intensity bands in the range $300-240 \text{ cm}^{-1}$ can be assigned to other cluster vibrations (Table III). Finally, additional Raman bands at 311 cm⁻¹ in PNb_2S_{10} and at 320 cm⁻¹ in $P_2Nb_4S_{21}$ (without infrared component) are observed for the first time. We attribute these new bands to $\nu Nb - S_2$ intercluster (or intrachain) symmetric vibrations, and their low frequency can be related to the slightly larger (+0.08)Å) bond lengths involved as compared with the intracluster Nb-S₂ distances.

Most of the $(Nb_2(S_2)_2)$ unit vibrations in the Raman spectra of PNb_2S_{10} were found to be enhanced when changing the exciting laser radiation, due to preresonance effects with the intense electronic charge-transfer transition at ~405 nm (Fig. 11). Unfortunately, similar effects were not evidenced with the highly colored P₂Nb₄S₂₁ compound and satisfactory Raman results were only obtained using the 514.5-nm line (Fig. 10).

A comparison of the remaining positions (Table III) with available spectroscopic data for $(P_2S_7)^{4-}$ (17) and $(PS_4)^{3-}$ (22, 23) reveals that spectra of PNb_2S_{10} and $P_2Nb_4S_{21}$ can be better understood in terms of linked (PS₃) groups rather than using a model of interacting (PS_4) tetrahedra. The great multiplicity of bands in the high-frequency region, 620-400 cm⁻¹, affords strong support for the first model meanwhile the characteristic frequency pattern and relative intensities known for the fundamental modes in several $(PS_4)^{3-}$ salts are not encountered. The numerous high-intensity infrared bands at 600–520 cm⁻¹ are thus assigned to asymmetric $\nu_{a}PS_{3}$ vibrations. and the corresponding symmetric Raman intense modes are localized around 410 cm^{-1} as in Ag₄P₂S₇ spectra. In this respect, the very strong band at 454 cm^{-1} (infrared) S

and at 389 cm⁻¹ (Raman) due to ν P P vibrations in (P₂S₇)⁴⁻ anions (and previously discussed in the spectra of the P₂NbS₈ systems) are now missing since simple sul-

fur-bridged P P bonds do not exist in PNb_2S_{10} and $P_2Nb_4S_{21}$ crystal structures. Finally, some deformation modes of the (PS_3) groups must contribute to the sets of bands observed in the region $300-230 \text{ cm}^{-1}$. and they overlap in part with other $(Nb_2(S_2)_2)$ cage vibrations. Some additional weak bands at $\sim 460 \text{ cm}^{-1}$ (infrared, Raman), 424 cm^{-1} (Raman), and 227 cm^{-1} (Raman), only detected in $P_2Nb_4S_{21}$ spectra, are still remaining, and we propose to assign these bands to the stretching (ν_a, ν_s) and bending (δ) vibrations of intraanionic $(S_3)^{2-}$ groups. Such a result is in agreement with spectroscopic data already known in BaS_3 (24), in spite of the variations of the

S angle and bond lengths (mean values are equal to 101° and 2.028 Å, respectively, compared to 114.9° and 2.076 Å in BaS₃) and the fact that strong constraints in 2D P₂Nb₄S₂₁ are likely to exist.

Finally, it may be noted that many lowfrequency Raman bands were detected in both PNb_2S_{10} and $P_2Nb_4S_{21}$. Although no precise assignments can be made, these bands must originate from intrachain and interchain bending modes.

Correlations between Vibrational and X-Ray Data and Future Outlooks

Discarding the high- and low-frequency parts of the spectra (combinations and lattice + deformation modes), we have shown in this study that the vibrational spectra are essentially a juxtaposition of bands characteristic of the niobium cluster units and of those of the anionic species. This result confirms not only the proposed descriptions of the crystal structure in terms of ionic fragments but also the predominance of nearest-neighbor interactions of covalent character.

As far as metal cage units are concerned, a close relationship between the four materials is evidenced, and the spectra are nicely interpreted using the $(Nb_2(S_2)_2)$ cluster model. The νS_2^{2-} stretching frequencies correlate well with d(S-S) bond distances. as shown in Fig. 12, and we find a good agreement with Steudel's empirical equation (25) ν S-S/cm⁻¹ = (2.57 - d(S-S)/Å)/ 9.47×10^{-4} (see the solid line in Fig. 12). Other available data on related trisulfide MS_3 systems (M^{4+} = Nb, Ti, Zr, Hf) which also have S_2^{2-} pairs within prismatic surroundings of metal ions (26-29) do not fit very well the same empirical rule. We conclude that the ν S-S modes in the systems under study appear to be characteristic and weakly coupled diatomic vibrations. Moreover, small differences on the frequency scale were observed between the in-phase A_g and out-of-phase B_{3u} components. As in NbS_2Cl_2 (8), this can be explained by weak direct interactions not only between the orbitals of both S_2^{2-} pairs in a cage, but also between the different ions because of the strong covalent bonding with niobium atoms.

In spite of similar Nb–Nb bond lengths in these four compounds (2.86–2.87 Å) and in NbS₂Cl₂ (2.87 Å), the ν Nb–Nb vibrations are shifted either toward lower frequencies (205 cm⁻¹) in the 2D phases or toward higher frequencies (~222 cm⁻¹) in 3D P₂NbS₈ than its value of 214 cm⁻¹ in NbS₂Cl₂. Although these variations are

FIG. 12. Variation of the ν S-S stretching vibrations versus interatomic distances, d(S-S), in the compounds under study [(1) 2D P₂NbS₈, (2) 3D P₂NbS₈, (3) 2D PNb₂S₁₀, (4) 2D P₂Nb4S₂₁] and in related NbS₂Cl₂ and MS₃ systems. The solid line corresponds to Steudel's equation (see text).

quite small, we believe that the highest frequency observed in 3D P2NbS8 may come from the existence of constraints in relation to the compacity of this three-dimensional network. In this respect, it is difficult to estimate the influence of vibrational couplings and of short-range interactions, but it must be pointed out that most of the cluster-mode frequencies in 2D and 3D P2NbS8 are weakly perturbed compared to their values in the other layer structures which possess (Nb₂S₉) infinite chains and intercluster S_2^{2-} pairs. We thus conclude that these cluster frequencies are weakly dependent on the different anionic surroundings. In Table IV we have collected the observed frequencies of in-phase ν_a (M_5-B_{2g}) and ν_s (M_2-A_g) Nb- $(S_2)_2$ stretching vibrations and also of the intercluster vNb-S2 modes with corresponding metal-sulfur bond lengths. In addition, the corresponding values of two A_g modes which possess a dominant contribution of $M-S_2$ bond stretching (according to calculations of potential energy distributions) in related MS_3 compounds (26-29) are included. A rough frequencydistance correlation is apparent in all Nb⁴⁺ (d_i) -containing compounds in which the Nb-S interactions are nearly equivalent,

while metal-sulfur force constants must be weaker in M^{4+} (d°)-containing trisulfur systems.

Concerning now the consequences of structural and electronic perturbations which can take place upon further interca-

TABLE IV

DEPENDENCE OF ν Nb-S ₂ Vibrations (cm ⁻¹) on
Mean Internuclear Distances d (Nb–S) (Å) in
P-Nb-S Phases, NbS_2Cl_2 , and Related MS_3
Systems

	Modes	ν (cm ⁻¹)	d/Å	Ref.
2D P2NbS8	$\begin{cases} M_2 \\ M_2 \end{cases}$	329-325 352-346	} 2.50	
3D P2NbS8	$ \begin{cases} M_2 \\ M_3 \end{cases} $	332–328 353–343	2.50	
2D PNb ₂ S ₁₀	$\begin{cases} M_2 \\ M_1 \end{cases}$	342-332 364	2.495	
	intercluster	311	2.575	
$2D P_2Nb_4S_{21}$	$\begin{cases} M_2 \\ M_5 \end{cases}$	331 345	} 2.495	
	intercluster	320	2.58	
NbS ₂ Cl ₂	$\begin{cases} M_2 \\ M_5 \end{cases}$	332–337 354	} 2.485	
NbS3	$\begin{cases} A_g \\ A_g \end{cases}$	350 340	2.55	(26)
TiS ₃	$\begin{cases} A_g \\ A \end{cases}$	300 278	2.50	(28)
ZrS3	$\begin{cases} A_g \\ A \end{cases}$	280 275	2.60	(27)
HfS ₃	$\left\{\begin{array}{c}A_g\\A_g\\A_g\end{array}\right.$	275 261) } 2.60	(29)

lation reactions in these 2D phases, these vibrational results deserve some comments. If an electronic localization on P-S bands or structural distortions on (PS₄) units occur upon intercalation, changes should be mainly detected in the infrared spectra where terminal ν PS₂ and ν PS₃ vibrations give rise to intense absorption bands. In the same way, perturbations of the bridged S

Ρ P bonds in 2D P_2NbS_8 could be evidenced on the intense infrared and Raman signals at ~ 400 cm⁻¹. Now, if $(Nb_2(S_2)_2)$ cages play the role of electronic acceptors, great modifications must occur in both the infrared and Raman spectra in relation to observed intense cluster modes, such as the $\nu_s Nb - (S_2)_2 A_g$ and B_{2u} components. In particular, an electronic perturbation on the S_2^{2-} pairs or on the metal centers could be detected by observing the ν S-S or ν Nb-Nb vibrations. In this respect, we must mention that the UV-visible spectra should be also highly informative, since one can expect in the intercalates a modification of the lower energy d-d type transitions and also of the higher energy metal-to-sulfur charge-transfer transitions, so that the guest-host lattice interactions could thus be investigated.

Acknowledgments

The authors are grateful to P. Gard and O. Poizat for experimental help in recording UV-visible absorption spectra.

References

- P. GRENOUILLEAU, R. BREC, M. EVAIN, AND J. ROUXEL, Rev. Chim. Miner. 20, 628 (1983).
- 2. M. EVAIN, R. BREC, G. OUVRARD, AND J. ROUXEL, *Mater. Res. Bull.* **19**, 41 (1984).
- 3. R. BREC, P. GRENOUILLEAU, M. EVAIN, AND J. ROUXEL, Rev. Chim. Miner. 20, 295 (1983).

- 4. R. BREC, M. EVAIN, P. GRENOUILLEAU, AND J. ROUXEL, Rev. Chim. Miner. 20, 283 (1983).
- 5. Y. MATHEY, R. CLÉMENT, C. SOURISSEAU, AND G. LUCAZEAU, Inorg. Chem. 19, 2773 (1980).
- 6. O. POIZAT, C. SOURISSEAU, AND Y. MATHEY, J. Chem. Soc. Faraday Trans. 1 80, 3257 (1984), and references therein.
- H. SCHÄFER AND W. BECKMANN, Z. Anorg. Allg. Chem. 347, 225 (1966).
- 8. J. RIJNSDORP, Ph.D. thesis. Gröningen, 1978.
- 9. J. RIINSDORP, G. J. DE LANGE, AND G. A. WIEGERS, J. Solid State Chem. 30, 365 (1973).
- C. PERRIN, A. PERRIN, AND J. PRIGENT, Bull. Soc. Chim. 8, 3086 (1972).
- C. PERRIN, A. PERRIN, AND P. CAILLET, J. Chim. Phys. 70, 105 (1973).
- 12. D. W. BULLET, J. Phys. C 13, 1267 (1980).
- 13. I. R. BEATTIE, T. R. GILSON, AND G. A. OZIN, J. Chem. Soc. A, 2765 (1968).
- 14. P. GARD AND C. SOURISSEAU, unpublished results.
- P. STEIN, V. MISHOWSKI, W. H. WOODRUFF, J. P. GRIFFIN, K. G. WERNER, B. P. GABER, AND T. G. SPIRO, J. Chem. Phys. 64, 2159 (1976).
- R. J. H. CLARK AND C. SOURISSEAU, Nouveau J. Chim. 4, 287 (1980).
- 17. C. SOURISSEAU, unpublished results.
- C. WIBBELMANN, W. BROCKNER, B. EISENMANN, AND H. SHÄFER, Z. Naturforsch. B 38, 1575 (1983).
- R. BOCKER AND W. BROCKNER, Z. Naturforsch. A 39, 1120 (1984).
- 20. M. TRANQUILLE AND M. FOUASSIER, J. Chem. Soc. Faraday Trans. 2 76, 26 (1980).
- 21. M. SOMER, W. BUES, AND W. BROCKNER, Z. Naturforsch. A 38, 163 (1983).
- 22. H. BÜRGER AND H. FALIUS, Z. Anorg. Allg. Chem. 363, 24 (1968).
- 23. U. PATZMANN AND W. BROCKNER, Z. Naturforsch. A 38, 27 (1983).
- 24. G. J. JANZ, E. RODUNER, J. W. COUTTS, AND J. R. DOWNEY, *Inorg. Chem.* 15, 1751 (1976).
- 25. R. STEUDEL, Angew. Chem. Int. Ed. 14, 655 (1975).
- A. ZWICK, M. A. RENUCCI, R. CARLES, N. SAINT-CRICQ, AND J. B. RENUCCI, *Physica B* 105, 361 (1981).
- C. SOURISSEAU AND Y. MATHEY, Chem. Phys. 63, 143 (1981).
- D. W. GALLIARDT, W. R. NIWEEN, AND R. D. KIRBY, Solid State Commun. 34, 37 (1980).
- 29. S. P. GWET, Y. MATHEY, AND C. SOURISSEAU, Phys. Status Solidi B 123, 503 (1984).